31 research outputs found

    Effectiveness of appropriately trained nurses in preoperative assessment: randomised controlled equivalence/non-inferiority trial

    Get PDF
    Objective To determine whether preoperative assessments carried out by appropriately trained nurses are inferior in quality to those carried out by preregistration house officers. Design Randomised controlled equivalence/non-inferiority trial. Setting Four NHS hospitals in three trusts. Three of the four were teaching hospitals. Participants All patients attending for assessment before general anaesthesia for general, vascular, urological, or breast surgery between April 1998 and March 1999. Intervention Assessment by one of three appropriately trained nurses or by one of several preregistration house officers. Main outcome measures History taken, physical examination, and investigations ordered. Measures evaluated by a specialist registrar in anaesthetics and placed in four categories: correct, overassessment, underassessment not affecting management, and underassessment possibly affecting management (primary outcome). Results 1907 patients were randomised, and 1874 completed the study; 926 were assessed by house officers and 948 by nurses. Overall 121/948 (13%) assessments carried out by nurses were judged to have possibly affected management compared with 138/926 (15%) of those performed by house officers. Nurses were judged to be non-inferior to house officers in assessment, although there was variation among them in terms of the quality of history taking. The house officers ordered considerably more unnecessary tests than the nurses (218/926 (24%) v 129/948 (14%). Conclusions There is no reason to inhibit the development of nurse led preoperative assessment provided that the nurses involved receive adequate training. However, house officers will continue to require experience in preoperative assessment

    Distinct and dissociable EEG networks are associated with recovery of cognitive function following anesthesia-induced unconsciousness

    Get PDF
    The temporal trajectories and neural mechanisms of recovery of cognitive function after a major perturbation of consciousness is of both clinical and neuroscientific interest. The purpose of the present study was to investigate network-level changes in functional brain connectivity associated with the recovery and return of six cognitive functions after general anesthesia. High-density electroencephalograms (EEG) were recorded from healthy volunteers undergoing a clinically relevant anesthesia protocol (propofol induction and isoflurane maintenance), and age-matched healthy controls. A battery of cognitive tests (motor praxis, visual object learning test, fractal-2-back, abstract matching, psychomotor vigilance test, digital symbol substitution test) was administered at baseline, upon recovery of consciousness (ROC), and at half-hour intervals up to 3 h following ROC. EEG networks were derived using the strength of functional connectivity measured through the weighted phase lag index (wPLI). A partial least squares (PLS) analysis was conducted to assess changes in these networks: (1) between anesthesia and control groups; (2) during the 3-h recovery from anesthesia; and (3) for each cognitive test during recovery from anesthesia. Networks were maximally perturbed upon ROC but returned to baseline 30-60 min following ROC, despite deficits in cognitive performance that persisted up to 3 h following ROC. Additionally, during recovery from anesthesia, cognitive tests conducted at the same time-point activated distinct and dissociable functional connectivity networks across all frequency bands. The results highlight that the return of cognitive function after anesthetic-induced unconsciousness is task-specific, with unique behavioral and brain network trajectories of recovery

    Valsartan Improves Adipose Tissue Function in Humans with Impaired Glucose Metabolism: A Randomized Placebo-Controlled Double-Blind Trial

    Get PDF
    <div><h3>Background</h3><p>Blockade of the renin-angiotensin system (RAS) reduces the incidence of type 2 diabetes mellitus. In rodents, it has been demonstrated that RAS blockade improved adipose tissue (AT) function and glucose homeostasis. However, the effects of long-term RAS blockade on AT function have not been investigated in humans. Therefore, we examined whether 26-wks treatment with the angiotensin II type 1 receptor blocker valsartan affects AT function in humans with impaired glucose metabolism (IGM).</p> <h3>Methodology/Principal Findings</h3><p>We performed a randomized, double-blind, placebo-controlled parallel-group study, in which 38 subjects with IGM were treated with valsartan (VAL, 320 mg/d) or placebo (PLB) for 26 weeks. Before and after treatment, an abdominal subcutaneous AT biopsy was collected for measurement of adipocyte size and AT gene/protein expression of angiogenesis/capillarization, adipogenesis, lipolytic and inflammatory cell markers. Furthermore, we evaluated fasting and postprandial AT blood flow (ATBF) (<sup>133</sup>Xe wash-out), systemic inflammation and insulin sensitivity (hyperinsulinemic-euglycemic clamp). VAL treatment markedly reduced adipocyte size (<em>P</em><0.001), with a shift toward a higher proportion of small adipocytes. In addition, fasting (<em>P</em>β€Š=β€Š0.043) and postprandial ATBF (<em>P</em>β€Š=β€Š0.049) were increased, whereas gene expression of angiogenesis/capillarization, adipogenesis and macrophage infiltration markers in AT was significantly decreased after VAL compared with PLB treatment. Interestingly, the change in adipocyte size was associated with alterations in insulin sensitivity and reduced AT gene expression of macrophage infiltration markers. VAL did not alter plasma monocyte-chemoattractant protein (MCP)-1, TNF-Ξ±, adiponectin and leptin concentrations.</p> <h3>Conclusions/Significance</h3><p>26-wks VAL treatment markedly reduced abdominal subcutaneous adipocyte size and AT macrophage infiltration markers, and increased ATBF in IGM subjects. The VAL-induced decrease in adipocyte size was associated with reduced expression of macrophage infiltration markers in AT. Our findings suggest that interventions targeting the RAS may improve AT function, thereby contributing to a reduced risk of developing cardiovascular disease and type 2 diabetes.</p> <h3>Trial Registration</h3><p>Trialregister.nl NTR721 (ISRCTN Registry: ISRCTN<a href="http://www.controlled-trials.com/isrctn/pf/42786336">42786336</a>)</p> </div

    Decidual-Secreted Factors Alter Invasive Trophoblast Membrane and Secreted Proteins Implying a Role for Decidual Cell Regulation of Placentation

    Get PDF
    Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the β€˜extravillous trophoblast’ (EVT) invade through the differentiated uterine endometrium (the decidua) to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10βˆ’8 M), medroxyprogesterone acetate (10βˆ’7 M) and cAMP (0.5 mM) for 14 days. Conditioned media (CM) was collected on day 2 (non-decidualized CM) and 14 (decidualized CM) of treatment. Isolated primary EVT cultured on Matrigelβ„’ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN) before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1), dipeptidyl peptidase 1 (DPP1/cathepsin C) and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro-inflammatory condition. Overall, we have demonstrated the potential of a proteomics approach to identify novel proteins expressed by EVT and to uncover the mechanisms leading to disease states
    corecore